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S.M. Kuzenko,a U. Lindström,b M. Ročekc and G. Tartaglino-Mazzucchellia,d

aSchool of Physics M013, The University of Western Australia,

35 Stirling Highway, Crawley W.A. 6009, Australia
bDepartment of Theoretical Physics, Uppsala University,

Box 803, SE-751 08 Uppsala, Sweden
cC.N.Yang Institute for Theoretical Physics, Stony Brook University,

Stony Brook, NY 11794-3840, U.S.A.
dCenter for String and Particle Theory, Department of Physics, University of Maryland,

College Park, MD 20742-4111, U.S.A.

E-mail: kuzenko@cyllene.uwa.edu.au, ulf.lindstrom@teorfys.uu.se,

rocek@max2.physics.sunysb.edu, gtm@umd.edu

Abstract: The projective superspace formulation for four-dimensional N = 2 matter-

coupled supergravity presented in arXiv:0805.4683 makes use of the variant superspace

realization for the N = 2 Weyl multiplet in which the structure group is SL(2, C) × SU(2)

and the super-Weyl transformations are generated by a covariantly chiral parameter. An

extension to Howe’s realization of N = 2 conformal supergravity in which the tangent

space group is SL(2, C) × U(2) and the super-Weyl transformations are generated by a

real unconstrained parameter was briefly sketched. Here we give the explicit details of the

extension.

Keywords: Extended Supersymmetry, Superspaces, Supergravity Models

ArXiv ePrint: 0905.0063

c© SISSA 2009 doi:10.1088/1126-6708/2009/08/023

mailto:kuzenko@cyllene.uwa.edu.au
mailto:ulf.lindstrom@teorfys.uu.se
mailto:rocek@max2.physics.sunysb.edu
mailto:gtm@umd.edu
http://arxiv.org/abs/0905.0063
http://dx.doi.org/10.1088/1126-6708/2009/08/023


J
H
E
P
0
8
(
2
0
0
9
)
0
2
3

Contents

1 Introduction 1

2 Conformal supergravity 2

2.1 Superspace geometry of conformal supergravity 2

2.2 Super-Weyl transformations 5

2.3 Partial gauge fixing I 6

2.4 Partial gauge fixing II 7

3 Curved projective superspace 8

3.1 Covariant O(n) supermultiplets 8

3.2 Covariant projective supermultiplets 10

3.3 Action principle 11

4 Conclusion 12

1 Introduction

Long ago, Howe [1] proposed superspace formulations for four-dimensional N ≤ 4 con-

formal supergravity theories [2–5] by explicitly gauging SL(2, C) × U(N ) and identifying

appropriate constraints on the torsion of curved superspace. In the case N = 1, which had

been earlier elaborated in a somewhat different but equivalent setting in [6], the approach

of [1] was utilized [7] to provide a unified description for the known off-shell realizations

(i.e., the old minimal, new minimal and non-minimal formulations) for N = 1 Poincaré

supergravity and the corresponding matter couplings. In the N = 2 case, few applications

of Howe’s formulation have appeared – essentially only the demonstration in [1, 8] of how

to obtain some off-shell formulations for pure N = 2 Poincaré supergravity by coupling the

Weyl multiplet to compensating multiplets, generalizing the N = 2 superconformal ten-

sor calculus [9]. No general discussion of matter couplings within the superspace setting

of [1] has been given. Of course, there is a simple historical explanation for that. Even

in rigid N = 2 supersymmetry, the adequate approaches for generating off-shell super-

multiplets and supersymmetric actions appeared only in 1984; they go under the names

harmonic superspace [10, 11] and projective superspace [12–15].1 The relation of the ap-

proach of [1] to the harmonic superspace formulation for N = 2 supergravity and its matter

couplings [11, 16] has not been elucidated in detail, except for a short and incomplete dis-

cussion in [17].

1The relationship between the rigid harmonic and projective superspace formulations is spelled out

in [18]. For a recent discussion, see also [19].
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A year ago, we developed a projective superspace formulation for 4D N = 2 super-

gravity and its matter couplings [20].2 In that work, we used an alternative superspace

formulation for N = 2 conformal supergravity. It differs from that given in [1] in the fol-

lowing three points: (i) the structure group is identified with SL(2, C) × SU(2); (ii) the

geometry of curved superspace is subject to the constraints introduced by Grimm [21];

(iii) the super-Weyl transformations are generated by a covariantly chiral but otherwise

unconstrained superfield. In [20], we also briefly sketched the correspondence between the

two superspace formulations for conformal supergravity. In the present note, we explicitly

extend the approach of [20] to the case of Howe’s formulation for conformal supergravity.

This paper is organized as follows. In section 2 we first review the formulation of [1]

for N = 2 conformal supergravity, and present the finite form for the corresponding super-

Weyl transformations. Using the latter result, we demonstrate how the formulation used

in [20] emerges from Howe’s formulation upon gauge fixing the super-Weyl and local U(1)

symmetries. In section 3 we introduce a family of covariant projective supermultiplets and

propose a locally supersymmetric and super-Weyl invariant action principle.

2 Conformal supergravity

We start by reviewing the superspace formulation for N = 2 conformal supergravity pro-

posed in [1].

2.1 Superspace geometry of conformal supergravity

Consider a curved four-dimensional N = 2 superspace M4|8 parametrized by local co-

ordinates zM = (xm, θµ
ı , θ̄ı

µ̇), where m = 0, 1, · · · , 3, µ = 1, 2, µ̇ = 1, 2 and ı = 1, 2.

The Grassmann variables θµ
ı and θ̄ı

µ̇ are related to each other by complex conjugation:

θµ
ı = θ̄µ̇ı. Following [1], we choose the structure group to be SL(2, C) × SU(2)R × U(1)R,

and let Mab = −Mba, Jij = Jji and J be the corresponding Lorentz, SU(2)R and U(1)R
generators. Along with gauge fields for the three subgroups of the structure group, which

are necessary to describe the multiplet of conformal supergravity, it is also useful to intro-

duce an Abelian vector multiplet associated with an internal group U(1)Z with generator Z

such that [Mab, Z] = [Jij , Z] = [J, Z] = 0. One can think of Z as a central charge operator.

The central charge vector multiplet contains the graviphoton. The covariant derivatives

DA = (Da,D
i
α, D̄α̇

i ) ≡ (Da,Dα, D̄α̇) have the form

DA = EA +
1

2
ΩA

bc Mbc + Φ kl
A Jkl + iΦA J + VA Z

= EA + ΩA
βγ Mβγ + ΩA

β̇γ̇ M̄
β̇γ̇

+ Φ kl
A Jkl + iΦA J + VA Z . (2.1)

Here EA = EA
M∂M is the supervielbein, with ∂M = ∂/∂zM , ΩA

bc is the Lorentz connec-

tion, ΦA
kl and ΦA are the SU(2)R and U(1)R connections, respectively. Finally, the vector

multiplet is described by VA.

2The harmonic and projective superspace approaches to N = 2 matter-coupled supergravity differ in (i)

the structure of covariant off-shell supermultiplets used; and (ii) the locally supersymmetric action principle

chosen.
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The Lorentz generators with vector indices (Mab) and spinor indices (Mαβ = Mβα and

M̄
α̇β̇

= M̄
β̇α̇

) are related to each other by the standard rule:

Mab = (σab)
αβMαβ − (σ̃ab)

α̇β̇M̄α̇β̇ , Mαβ =
1

2
(σab)αβMab , M̄α̇β̇ = −

1

2
(σ̃ab)α̇β̇Mab .

The generators of the structure group act on the spinor covariant derivatives as follows:3

[Mαβ ,Di
γ ] = εγ(αD

i
β) , [M̄

α̇β̇
, D̄i

γ̇ ] = εγ̇(α̇D̄
i
β̇)

,

[Jkl,D
i
α] = −δi

(kDαl) , [Jkl, D̄
α̇
i ] = −εi(kD̄

α̇
l) ,

[J,Di
α] = Di

α , [J, D̄α̇
i ] = −D̄α̇

i , (2.2)

while [Z,DA] = 0. Our notation and conventions coincide with those adopted in [20] and

correspond to [22].

The entire gauge group is generated by local transformations of the form

δKDA = [K,DA] , K = KCDC +
1

2
KcdMcd + KklJkl + iL J + τ Z , (2.3)

with the gauge parameters obeying natural reality conditions, but otherwise arbitrary.

Given a tensor superfield U(z), with its indices suppressed, it transforms as follows:

δKU = KU . (2.4)

The covariant derivatives obey the algebra

[DA,DB} = TAB
CDC +

1

2
RAB

cdMcd + RAB
klJkl + iRAB J + FAB Z , (2.5)

where TAB
C is the torsion, RAB

kl, RAB and RAB
cd are the curvatures and FAB the vector

multiplet field strength. To describe conformal supergravity, the torsion has to be subject

to the following constraints [1]:

Tαβ
C = Tα

β̇ γ = 0 , T i
α

β̇
j

c = −2iδi
j(σ

c)α
β̇ ,

Tαb
c = Tab

c = 0 , Tαα̇,
j
β

γ
k =

1

2
δγ
α Tρα̇,

j
β

ρ
k . (2.6)

The gauge field VA also has to obey covariant constraints to describe the vector multiplet.

The vector multiplet constraints [23] are

F i
α

j
β = −2εαβεijW̄ , F α̇

i
β̇
j = 2εα̇β̇εijW , F i

α
β̇
j = 0 . (2.7)

3The (anti)symmetrization of n indices is defined to include a factor of (n!)−1.
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The solution to the constraints is as follows:

{Di
α,Dj

β} = 4SijMαβ + 2εijεαβY γδMγδ + 2εijεαβW̄ γ̇δ̇M̄
γ̇δ̇

+2εαβεijSklJkl + 4YαβJ ij − 2εαβεijW̄Z , (2.8a)

{Di
α, D̄β̇

j } = −2iδi
j(σ

c)α
β̇Dc + 4

(
δi
jG

δβ̇ + iGδβ̇ i
j

)
Mαδ + 4

(
δi
jGαγ̇ + iGαγ̇

i
j

)
M̄ γ̇β̇

+8Gα
β̇J i

j − 4iδi
jGα

β̇klJkl − 2
(
δi
jGα

β̇ + iGα
β̇i

j

)
J , (2.8b)

[Da,D
j
β ] = −i(σ̃a)

α̇γ
(
δj
kGβα̇ + iGβα̇

j
k

)
Dk

γ

+
i

2

(
(σa)βγ̇Sjk − εjk(σa)β

δ̇W̄
δ̇γ̇

− εjk(σa)
α

γ̇Yαβ

)
D̄γ̇

k

+
1

2
Ra

j
β

cdMcd + Ra
j
β

klJkl + iRa
j
β J +

i

2
(σa)β

γ̇D̄j
γ̇W̄Z . (2.8c)

Here the dimension-1 components of the torsion obey the symmetry properties

Sij = Sji , Yαβ = Yβα , Wαβ = Wβα , Gαα̇
ij = Gαα̇

ji (2.9)

and the reality conditions

Sij = S̄ij , Wαβ = W̄α̇β̇ , Yαβ = Ȳα̇β̇ , Gβα̇ = Gαβ̇ , Gβα̇
ij = Gαβ̇ij . (2.10)

The U(1)R charges of the complex fields are:

J Sij = 2Sij , J Yαβ = 2Yαβ , J Wαβ = −2Wαβ , J W = −2W . (2.11)

The dimension-3/2 components of the curvature appearing in (2.8c) have the following

explicit form:

Ra
j
βcd = −i(σd)β

δ̇Tac
j

δ̇
+ i(σa)β

δ̇Tcd
j

δ̇
− i(σc)β

δ̇Tda
j

δ̇
, (2.12a)

Rαα̇
j
β

kl = −iεj(kD̄
l)
α̇Yαβ − iεαβεj(kD̄δ̇l)W̄

α̇δ̇
−

i

3
εαβεj(kD̄α̇qS

l)q

+
4

3
εj(kD(αqGβ)α̇

l)q +
2

3
εαβεj(kDδ

qGδα̇
l)q , (2.12b)

Rαα̇
j
β = −Dj

βGαα̇ +
i

3
D(αkGβ)α̇

jk +
i

2
εαβD

γ
kGγα̇

jk . (2.12c)

The right-hand side of (2.12a) involves the dimension-3/2 components of the torsion which

are expressed in terms of the dimension-1 tensors as follows:

Tab
k
γ̇ ≡ (σab)

αβTαβ
k
γ̇ − (σ̃ab)

α̇β̇T
α̇β̇

k
γ̇ , (2.13a)

Tαβ
k
γ̇ = −

1

4
D̄k

γ̇Yαβ +
i

3
Dl

(αGβ)γ̇
k
l , (2.13b)

Tα̇β̇
k
γ̇ = −

1

4
D̄k

γ̇W̄α̇β̇ −
1

6
εγ̇(α̇D̄β̇)lS

kl −
i

3
εγ̇(α̇D

δ
qGδβ̇)

kq . (2.13c)
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The dimension-3/2 Bianchi identities are:

D(i
α Sjk) = 0 , D̄

(i
α̇Sjk) = iDβ(iGβα̇

jk) , (2.14a)

Di
αW̄

β̇γ̇
= 0 , (2.14b)

Di
(αYβγ) = 0 , Di

αSij + Dβ
j Yβα = 0 , (2.14c)

D
(i
(αG

β)β̇
jk) = 0 , (2.14d)

Di
αG

ββ̇
= −

1

4
D̄i

β̇
Yαβ +

1

12
εαβD̄β̇j

Sij −
1

4
εαβD̄

γ̇iW̄
γ̇β̇

−
i

3
εαβD

γ
j G

γβ̇
ij . (2.14e)

The Bianchi identities for the vector multiplet are

D̄α̇
i W = 0 , (2.15a)

(1

4
Dγ(iDj)

γ + Sij
)
W =

(1

4
D̄

(i
γ̇ D̄

γ̇j) + S̄ij
)
W̄ ≡ Σij , Σij = Σij . (2.15b)

Using the anti-commutation relations (2.8a) and (2.8b), the Bianchi identities (2.14a)

and (2.15a), one can check that eq. (2.15b) implies the following relations:

D(i
αΣjk) = D̄

(i
α̇Σjk) = 0 . (2.16)

It should be pointed out that the vector multiplet field strength, Fab, is expressed in terms

of the covariantly chiral scalar W and its conjugate as follows:

Fab = −
1

8
(σab)βγD

βkDγ
kW −

1

8
(σ̃ab)β̇γ̇D̄

β̇kD̄γ̇
kW̄

−
1

4

(
(Yab + Wab)(W + W̄ ) +

i

2
εabcd(Y

cd − W cd)(W − W̄ )
)

. (2.17)

2.2 Super-Weyl transformations

The constraints (2.6) were shown in [1] to be invariant under infinitesimal super-Weyl

transformations generated by a real unconstrained parameter U = Ū . We find the finite

form of such a transformation to be

D′i
α = eU

(
Di

α + 4(DγiU)Mγα − 4(DαkU)Jki − (Di
αU) J

)
, (2.18a)

D̄′
α̇i = eU

(
D̄α̇i + 4(D̄γ̇

i U)M̄γ̇α̇ + 4(D̄k
α̇U)Jki + (D̄α̇iU) J

)
, (2.18b)

D′
αα̇ = e2U

(
Dαα̇ + 2i(D̄α̇kU)Dk

α + 2i(Dk
αU)D̄α̇k + 2(Dγ

α̇U)Mγα + 2(Dα
γ̇U)M̄γ̇α̇

− 4i(DγkU)(D̄α̇kU)Mγα + 4i(Dk
αU)(D̄γ̇

kU)M̄γ̇α̇

+ 8i(D(k
α U)(D̄

l)
α̇U)Jkl +

i

2
(Dk

αU)(D̄α̇kU) J

)
. (2.18c)

These relations imply that the dimension-1 components of the torsion transform as

W ′
αβ = e2UWαβ , (2.19a)

Y ′
αβ = e2U

(
Yαβ − (Dk

(αDβ)kU) − 4(Dk
(αU)(Dβ)kU)

)
, (2.19b)

S′
ij = e2U

(
Sij − (Dγ

(iDγj)U) + 4(Dγ

(iU)(Dγj)U)
)

, (2.19c)

G′
αα̇ = e2U

(
Gαα̇ −

1

4
[Dk

α, D̄α̇k]U − 2(Dk
αU)(D̄α̇kU)

)
, (2.19d)

G′
αα̇

ij = e2U
(
Gαα̇

ij +
i

2
[D(i

α , D̄
j)
α̇ ]U

)
. (2.19e)

– 5 –
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In the infinitesimal case, the above transformation laws reduce to those given in [1]. Of

special importance for our consideration below is the fact that the right-hand side in (2.19e)

contains no contribution quadratic in derivatives of U .

The super-Weyl transformation of the vector multiplet field strength is

W ′ = e2UW . (2.20)

Using this result, one can derive the super-Weyl transformation of the descendant Σij

introduced in (2.15b). It is

Σ′
ij = e4UΣij . (2.21)

2.3 Partial gauge fixing I

The torsion Gαα̇
ij turns out to be a pure gauge degree of freedom with respect to the

super-Weyl symmetry. This means that

Gαα̇
ij = −

i

2
[D(i

α , D̄
j)
α̇ ]U , (2.22)

for some real scalar superfield U . The simplest way to see this is to follow Howe’s procedure

of introducing the minimal supergravity multiplet [1].

Suppose that the Abelian vector multiplet, which was introduced in subsection 2.1, is

such that W 6= 0 at each point of the superspace. Under the super-Weyl and local U(1)R
transformations, the field strength changes as

W → e2(U−iL)W . (2.23)

Such a combined transformation acts on Gαα̇
ij according to eq. (2.19e), for Gαα̇

ij is neutral

with respect to J. Since the transformation parameters U and L are real and unconstrained,

it is in our power to choose the gauge

W = 1 (2.24)

which completely fixes the super-Weyl and local U(1)R symmetries. What are the impli-

cations of this gauge fixing? First of all, the condition that W is covariantly chiral implies

that 0 = D̄α̇
i W = −2iΦα̇

i = 0, and therefore

Φi
α = Φα̇

i = 0 . (2.25)

Since the spinor U(1)R connections vanish, the gauge condition (2.24) and the Bianchi

identity (2.15b) lead to

Sij = S̄ij . (2.26)

Similar arguments give

0 = Di
αD̄

j

β̇
W̄ = 2iεij(σa)αβ̇DaW̄ + 4εijGαβ̇W̄ − 4iGαβ̇

ijW̄

= −4εijΦ
αβ̇

+ 4εijG
αβ̇

− 4iG
αβ̇

ij

– 6 –
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and therefore

G
αβ̇

ij = 0 , Φ
αβ̇

= G
αβ̇

. (2.27)

The first equation here tells us that G
αβ̇

ij vanishes upon imposing the super-Weyl +

local U(1)R gauge condition (2.24). Recalling the super-Weyl transformation law of G
αβ̇

ij ,

eq. (2.19e), we conclude that the general form for G
αβ̇

ij is given by eq. (2.22).

2.4 Partial gauge fixing II

In the above consideration, the vector multiplet played the role of a useful technical tool

that allowed us to prove eq. (2.22). Since eq. (2.22) has been justified, we can undo the

gauge condition (2.24) and return to the general case. Due to (2.22) and the super-Weyl

transformation (2.19e), we can use the super-Weyl gauge freedom to choose

G
αβ̇

ij = 0 . (2.28)

In this gauge, let us introduce new covariant derivatives D̃A defined by the rule:

D̃i
α = Di

α , D̃a = Da − iGa J . (2.29)

Then, making use of the (anti) commutation relations (2.8a), (2.8b) and (2.8c), one can

readily check the covariant derivatives D̃A have no J-curvature, R̃AB = 0, and therefore the

corresponding connection Φ̃A is flat. We can choose Φ̃A = 0 by applying an appropriate

local U(1)R transformation. As a result, the superspace geometry proves to reduce to the

one used in [20] for the description of general supergravity-matter systems. This geometry

corresponds to Grimm’s curved superspace setting [21].

Let us suppose that we have chosen the super-Weyl gauge condition (2.28) and also

fixed the local U(1)R symmetry by setting Φi
α = 0. Eq. (2.28) does not completely fix the

super-Weyl symmetry. In accordance with (2.19e), the residual gauge freedom is described

by a parameter U constrained as

[D(i
α , D̄

j)
α̇ ]U = 0 . (2.30)

As pointed out in [20], the general solution of this equation is

U =
1

4
(σ + σ̄) , D̄α̇

i σ = 0 , J σ = 0 . (2.31)

Here the parameter σ is covariantly chiral but otherwise arbitrary. As follows from (2.18a)

and (2.18b), such a super-Weyl transformation must be accompanied by the following

compensating U(1)R-transformation

D′
A = eiLJ DA e−iLJ , L =

i

4
(σ − σ̄) (2.32)

to preserve the gauge condition Φi
α = 0. The resulting transformation is

D′i
α = e

1

2
σ̄
(
Di

α + (Dγiσ)Mγα − (Dαkσ)Jki
)

, (2.33a)

D̄′
α̇i = e

1

2
σ
(
D̄α̇i + (D̄γ̇

i σ̄)M̄γ̇α̇ + (D̄k
α̇σ̄)Jki

)
. (2.33b)

– 7 –
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In the infinitesimal case, this super-Weyl transformation reduces to that given in [20]. The

finite super-Weyl transformations of the covariant derivatives, eqs. (2.33a) and (2.33b), and

of various components of the torsion were given in [24].

It is interesting to point out analogies between the 4D N = 2 superspace formulation

considered with that for 5D N = 1 conformal supergravity4 [27]. In the five-dimensional

case, the super-Weyl transformations are also generated by a real unconstrained parame-

ter [27]. Moreover, the corresponding superspace torsion includes a vector-isovector com-

ponent Câ
ij = Câ

ji, with the lower index being 5D vector, which can be gauged away by

the super-Weyl transformations. This superfield is the 5D analogue of Gαα̇
ij. In the gauge

Câ
ij = 0, the super-Weyl parameter obeys a constraint which is similar to (2.30).

3 Curved projective superspace

Matter couplings in supergravity are described in [20] in terms of covariant projective

supermultiplets. In this section, we first generalize the concept of covariant projective

supermultiplets to the case of Howe’s formulation for conformal supergravity, and then we

present a locally supersymmetric and super-Weyl invariant action.

3.1 Covariant O(n) supermultiplets

Consider a completely symmetric isotensor superfield F i1...in = F (i1...in). For simplicity, we

assume it to be neutral with respect to the central charge generator Z in (2.1), Z F i1...in = 0,

although this condition is not necessary for the discussion below. We require F i1...in to

obey the constraints5

D(j
α F i1···in) = D̄

(j
α̇ F i1···in) = 0 . (3.1)

Using the anti-commutation relations (2.8a) and (2.8b), one can check that these con-

straints are consistent provided the following conditions hold:

(i) F i1...in is neutral with respect to J,

J F i1...in = 0 ; (3.2)

(ii) F i1...in is scalar with respect to the Lorentz group,

MabF
i1...in = 0 . (3.3)

4The superconformal tensor calculus in five dimensions was developed in [25, 26].
5Constraints of the form (3.1) have a long history in rigid N = 2 supersymmetry. For n = 1 they

define an on-shell hypermultiplet [28]; the supermultiplet becomes off-shell if one allows for a non-vanishing

intrinsic central charge, ZF i 6= 0. The case n = 2 was considered in [12, 29, 30] and corresponds to the

off-shell N = 2 tensor multiplet [31] provided F ij is real. The case n = 4 was briefly discussed in [30] in the

context of superactions, and it also played a key role in the relaxed hypermultiplet construction [32]. The

constraints for arbitrary n > 2 first appeared in [33]. These constraints were shown in [14, 34] to provide

alternative off-shell formulations for the hypermultiplet if n = 2m, with m = 2, 3 . . . , and F i1...i2m is chosen

to be real.
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Thus, the transformation law (2.4) in the case of F i1...in becomes

δKF i1...in =
(
KCDC + KklJkl

)
F i1...in , KklJkl F

i1···in =

n∑

l=1

Kil
j F ji1···bil···in . (3.4)

One can associate with F i1...in a holomorphic tensor field on CP 1, F (n)(u+), defined as

F (n)(u+) = u+
i1
· · · u+

in
F i1···in , F (n)(c u+) = cn F (n)(u+) , c ∈ C \ {0} , (3.5)

with u+
i ∈ C2 \ {0} homogeneous coordinates for CP 1.

It is useful to take the auxiliary variables u+
i to be inert6 under the local SU(2)R group,

that is [Jkl, u
+
i ] = 0, for their sole role is to describe F i1···in in terms of the index-free object

F (n)(u+). Then, the transformation law (3.4) can be rewritten as

δKF (n) =
(
KCDC + KklJkl

)
F (n) ,

KklJklF
(n) = −

1

(u+u−)

(
K++D(−1,1) − n K+−

)
F (n) , K±± = Kij u±

i u±
j , (3.6)

where

D(−1,1) := u−i ∂

∂u+i
. (3.7)

Eq. (3.6) involves an additional complex two-vector, u−
i , which has to be linearly inde-

pendent of u+
i , that is (u+u−) := u+iu−

i 6= 0, and is otherwise completely arbitrary. It is

important to note that since the u+
i are fixed and constant, F (n)(u+) is not isoscalar. In

this approach, the u+
i serve merely to totally symmetrize all SU(2)R indicies.

Without imposing the constraints (3.1) and their corollaries (3.2) and (3.3), the above

consideration can be naturally generalized. Namely, one can allow F i1...in = F (i1...in) to

carry any number of Lorentz indices and have a non-vanishing J-charge. Let F (n)(u+) be

the homogeneous polynomial of degree n associated with F i1...in . An operation of multi-

plication is naturally defined in the space of such polynomials, for given two homogeneous

polynomials F (n)(u+) and F (m)(u+), their product F (n+m)(u+) := F (n)(u+)F (m)(u+) is a

homogeneous polynomials of degree (n + m). If one introduces the differential operators

D+
α := u+

i Di
α and D̄+

α̇ := u+
i D̄i

α̇, then

D+
α F (n)(u+) = u+

j u+
i1
· · · u+

in
D(j

α F i1···in) , D̄+
α̇ F (n)(u+) = u+

j u+
i1
· · · u+

in
D̄

(j
α̇ F i1···in)

are homogeneous polynomials of degree (n + 1). Here we have used the fact that the

auxiliary variables u+
i are inert under the local SU(2)R group, [Jkl, u

+
i ] = 0.

The example of F (n)’s considered can naturally be extended to define more general

isotwistor superfields. They are introduced similarly to the consideration given in the

appendix in [20]. The only difference from [20] is that now an isotwistor superfield may

have a non-vanishing J-charge.

6This is similar to the approach often used in the context of higher spin field theories, see e.g. [35].
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Let us now return to the constraints (3.1). They are equivalent to

D+
α F (n) = D̄+

α̇ F (n) = 0 . (3.8)

When acting on isotwistor superfields, the differential operators D+
α and D̄+

α̇ obey the

following anti-commutation relations:

{D+
α ,D+

β } = 4S++Mαβ + 4YαβJ++ , (3.9a)

{D+
α , D̄+

β̇
} = 4iGγ

β̇
++Mαγ − 4iGα

γ̇++M̄
β̇γ̇

+ 8G
αβ̇

J++ − 2iG
αβ̇

++
J , (3.9b)

where we have defined

J++ := u+
i u+

j J ij , S++ := u+
i u+

j Sij , (3.10)

and similarly for G
αβ̇

++. The constraints (3.8) are consistent because the integrability

condition J++F (n) = 0 holds identically. The other integrability conditions for the con-

straints (3.8) are: J F (n) = 0 and MabF
(n) = 0. Following [20], the superfield F (n) will be

called a covariant O(n) supermultiplet.

As an example of O(n) supermultiplets, we can consider the O(2) multiplet

Σ++ = u+
i u+

j Σij , (3.11)

with Σij defined in (2.15b).

Using O-type supermultiplets, F (n) and H(m), one can construct covariant rational

supermultiplets of the form

R(n−m)(u+) =
F (n)(u+)

H(m)(u+)
, (3.12)

which correspond to meromorphic tensor fields on CP 1. The R(p)(u+) possesses properties

which are completely similar to (3.6) and (3.8). In the rigid supersymmetric case, rational

supermultiplets were introduced in [14]. The above superfields are examples of covariant

projective supermultiplets we will now introduce.

3.2 Covariant projective supermultiplets

By definition, a covariant projective supermultiplet of weight n, Q(n)(z, u+), is a scalar

superfield that lives on M4|8, is holomorphic on an open domain of C2 \ {0} with respect

to the homogeneous coordinates u+
i for CP 1, and is characterized by the conditions:

(i) it obeys the covariant constraints

D+
α Q(n) = D̄+

α̇ Q(n) = 0 ; (3.13)

(ii) it is a homogeneous function of u+ of degree n, that is,

Q(n)(z, c u+) = cn Q(n)(z, u+) , c ∈ C \ {0} ; (3.14)

– 10 –
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(iii) it is neutral with respect to J:

J Q(n)(z, u+) = 0 (3.15)

(iv) the supergravity gauge transformations act on Q(n) as follows:

δKQ(n) =
(
KCDC + KklJkl

)
Q(n) ,

KklJklQ
(n) = −

1

(u+u−)

(
K++D(−1,1) − n K+−

)
Q(n) . (3.16)

Using eqs. (3.9a) and (3.9b) one can see that these definitions are consistent. The integra-

bility condition for the constraints (3.13) is J++Q(n) = 0, and clearly it holds identically.

What are admissible super-Weyl transformations of projective supermultiplets? As-

suming that Q(n) transforms homogeneously under the super-Weyl transformations, the

constraints (3.13) uniquely fix its transformation law:

δUQ(n) = 2nU Q(n) . (3.17)

On the space of covariant projective supermultiplets, one can introduce a generalized

(smile) conjugation Q(n)(u+) → Q̃(n)(u+), with Q̃(n) also being a covariant projective

supermultiplet. The smile-conjugation is defined in [20]. If n is even, one can consistently

define real supermultiplets.

If one partially fixes the super-Weyl symmetry as in (2.28) as well as imposes the U(1)R
gauge condition (2.25), the above definitions and properties reduce to those given in [20].

3.3 Action principle

Within the curved superspace setting under consideration, the construction of supersym-

metric action principle is practically identical to that given in [20]. Let L++ be a real

projective multiplet of weight two, with the super-Weyl transformation law

δUL
++ = 4U L++ . (3.18)

Associated with L++ is the following functional:

S =
1

2π

∮
(u+du+)

∫
d4xd4θd4θ̄ E

WW̄L++

(Σ++)2
, E−1 = Ber(EA

M ) . (3.19)

By construction, this functional is invariant under re-scalings u+
i (t) → c(t)u+

i (t), for an

arbitrary function c(t) ∈ C \ {0}, where t denotes the evolution parameter along the

closed integration contour. Since J E = 0 and J (WW̄ ) = 0, S is invariant under the

local U(1) transformations. Using this observation, the above functional can be shown to

be invariant under arbitrary supergravity gauge transformations, eqs. (2.3) and (2.4), in

complete analogy with [20]. Since E is invariant under the super-Weyl transformations,

δUE = 0 , (3.20)

– 11 –
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the transformation laws (2.20), (2.21) and (3.18) tell us that S is super-Weyl invariant.

In the super-Weyl and local U(1)R gauge defined by eqs. (2.28) and (2.25), the ac-

tion (3.19) reduces to that proposed in [20].

The locally supersymmetric and super-Weyl invariant action (3.19) is suitable to de-

scribe the dynamics of general N = 2 supergravity-matter system including the formula-

tions of Poincaré supergravity introduced in [20, 37]. In particular this is true for chiral

actions of the form

Sc =

∫
d4xd4θ E Lc + c.c. , D̄α̇Lc = 0 , JLc = −4Lc , δULc = 4ULc , (3.21)

with E the chiral density [8, 36]. The latter follows from the fact that Sc admits the

following representation [37]:

Sc =
1

2π

∮
(u+du+)

∫
d4xd4θd4θ̄ E

WW̄L++
c

(Σ++)2
,

L++
c = −

1

4
V

{(
(D+)2 + 4S++

)Lc

W
+

(
(D̄+)2 + 4S̄++

) L̄c

W̄

}
, (3.22)

with V (u+) the tropical prepotential for the vector multiplet with field strength W , see [20]

for the definition of V (u+).

4 Conclusion

For many years, Howe’s superspace formulation for N = 2 conformal supergravity [1] has

remained a nice theoretical construction of purely academic interest. In the present paper,

we demonstrated that the curved superspace setting of [1] is ideally suited for the construc-

tion of various matter couplings as well as a superspace action. For practical calculations,

however, it is useful to work in the super-Weyl and local U(1)R gauge (2.28) and (2.25),

in which the general supergravity-matter systems reduce to those presented in [20].
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